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A note on potential energy density in a stratified 
compressible fluid 
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(Received 3 April 1980 and in revieed form 27 October 1980) 

An exact, local, positive definite expression is obtained for the potential energy density 
in a wide class of stratified compressible fluids. This expression is an extension of that 
derived for incompressible stratified fluids in the preceding paper by Holliday & 
McIntyre (1981), and also represents a finite-amplitude analogue of the disturbance 
potential energy density that is familiar in small-amplitude theory. Its volume 
integral reduces to Lorenz’ (1955) available potential energy under suitable choice of 
a hydrostatic reference state, provided that the fluid is contained within a fixed volume 
enclosed by rigid impermeable boundaries. 

1. Introduction 
In  the preceding paper, Holliday & McIntyre (1981) (hereafter designated HM) 

have derived an exact local expression for the potential energy density in an incom- 
pressible stratified fluid; this generalizes the small-amplitude versions for potential 
energy density in such a fluid that are well known in the literature (for references see 
HM), and may therefore be useful in discussing motions involving large displacements 
of fluid particles. The present note extends HM’s result to a compressible fluid with 
an arbitrary equation of state. Under certain restrictions on the equation of state 
(including the physically reasonable requirement that the fluid shall support sound 
waves) the potential energy density, which includes gravitational potential energy 
and internal energy terms, can be demonstrated to be positive definite. The volume 
integral of the potential energy as defined here is generally greater than the available 
potential energy defined by Lorenz (1955); however, it does equal the latter when the 
reference state discussed in 9 2 is taken to be Lorenz’ reference state, namely that state 
of hydrostatic equilibrium obtained from the actual instantaneous state by an adia- 
batic redistribution of mass. The reader is referred to HM for more background dis- 
cussion: possible applications are mentioned in c 7, below. 

2. Derivation of the potential energy density 

fluid under gravity are the momentum, continuity and entropy equations, 
A complete set of equations describing the inviscid, adiabatic flow of a compressible 

Du 1 
-+-vp+vcp = 0, 
Dt P 

t Present address: Department of Atmospheric Physics, Clarendon Laboratory, Parka Road, 
Oxford ox1 3PU. 
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*+pv.u = 0, Dt 
Ds 

- 0, D t -  
and the equation of state 

pa' = F(s ,p ) .  

Here u(x, t )  is the fluid velocity, p(x, t )  the density, p(x, t) the pressure, and s(x, t )  
the entropy per unit mass; @(x) is the gravitational potential, D/Dt is the material 
derivative, and F is a suitably well-behaved function. The equations can also be 
referred to a uniformly rotating frame, if desired, by adding a Coriolis term to (2.1) 
and redefining CD to include a centrifugal term in the usual way; the results given 
below will then be unchanged. 

Using (2.1)-(2.4) it  is straightforward to derive the energy equation in the usual 
form 

D 
Pfi{)IUI*+€+@}+V.(2)U) = 0, 

where the internal energy e(s ,p)  can be related to the enthalpy H(s ,p )  by 

4 s , p )  = W , P ) - P / P  = H(S,P)-PF(S,P) (2.6) 

and the enthalpy itself satisfies 

H, = T = G ( s , ~ ) ,  Hp = p-l = F(s ,P) ,  (2.7a, b)  

where suffixes s and p denote partial derivatives and G represents the thermodynamic 
dependence of the temperature T on s andp; H will be assumed twice differentiable in 
s and p. 

We now introduce a reference state 9, of hydrostatic equilibrium, in which 

= 0, {p,p,s, T} = {po,po,~o, To}, 
where 

and 

For the moment we shall not require any relationship between this reference state and 
the actual state of the fluid; this contrasts with Lorenz' definition of a reference state 
(BL, say) as that obtained from the actual state by an entropy-conserving redistribu- 
tion of mass. 

By taking the curl of (2.8) and using (2.9) we can easily show that all reference state 
quantities are constant on equipotentials; it  turns out to be convenient to express 
each one as a function of so: 

(2.10) 

We assume that in go the entropy increases 'upwards', i.e. in the direction of 
increasing @, and so 

a& 
as0 

&'(so) = - > 0. (2.11) 
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The hydrostatic equation (2.8) becomes 

and hence, by (2.11), 
$'(so) = -&so) @'(so) ,  

p'(so) < 0. 

(2.12) 

(2.13) 

With (3.11) below, this implies that go is statically stable: see $6.2. 

the energy equation (2.5) into an alternative form. First we note that 
We now return to the actual fluid motion expressed by (2.1)-(2.4) and manipulate 

PODP -0 " p ) ;  V . ( p 0 u )  = p O v . u + u . v ~ ,  = ---+= = P- 
P Dt Dt P 

(2.14) 

the second equality uses the continuity equation (2.2) and the fact that @,/at = 0.  
We next invoke the thermodynamic identities (2.7) to obtain 

and hence, using (2.9), (2.10) and also ap,/at = 0 again, 

D 80 

Dt 
= -J P(s')ds'-u.V@, (2.15) 

by (2.8). Using (2.3), we can insert s as the lower limit in the integral in (2.15) provided 
that P(s') is defined for all s' lying between a. and 8 .  We ensure that the latter condition 
holds by requiring that every value of the entropy in the actual state shall also be 
present in the reference state; then 

(2.16) 

Finally, we substitute (2.6), (2.14) and (2.16) into the energy equation (2.5) and obtain 

(2.17) 

n{s,P;%~,Po} H ( ~ , P ) - H ( ~ O , P O ) - ~ -  ( p  -Po)  P(8') ds' (2.18) 

is a potential energy per unit mass.? It is important to notice that the derivation of 
(2.17) from (2.5) has not employed the momentum equation (2.1). We also observe 
that the excess pressure p -po ,  rather than the total pressure p ,  appears in the diver- 
gence term in (2.17), just as it does in the 'disturbance energy equation' for small- 
amplitude acoustic-gravity waves (e.g. Lighthill 1978, $5 1.3, 4.2). This helps explain 
why, in the limit of small-amplitude disturbances to a resting fluid, Il reduces to the 
potential energy density found in the linear theory; see 9 6.2, below. 

t Note that HM work in terms of a potential energy per unit volume, E,, while we find it 
more convenient in the compressible case to uae a potential energy per unit m w .  

D 
P ~ { a l U I ~ + n ) + v . { ( P - P o ) U }  = 0, 

where ..--a 
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3. The positive definite character of ll 

now show that II is positive if ( s , p )  $: (s,,po). To do this we split II into two parts: 
From the definition (2.18) it is clear that ll vanishes when s = so and p = po; we 

where 

and 

We first consider n,: using (2.7b) and some integrations by parts, i t  can easily be 
shown that 

(P’ -210) H p p ( s ,  P’) dP’. 

Equation (2.7b) also gives 

where 
Hpp(s,p) = Fp = - 

c2(s,p) = - 
we shall assume that 

c2 > 0 

for all 8 andp; then c is the speed of sound. By (3.5) and (3.6) Hpp c 0 for all s and p ;  
in particular 

where p‘ lies between po  and p .  Consideration of the two alternatives p 2 po  and use 
of (3.7) then show that the integral in (3.4) is positive definite; that is 

-Hpp(s,p’) > 0, (3.7) 

II, > 0 if p + p o .  (3.8) 

We next turn attention to II,; (3.3) yields 

n, = s” {Ha(8’,p0) - p(8‘))dS’ 
a0 

by (2.7a), (2.9) and (2.10). Now (2.13) implies that @ is a monotonically decreasing 
function of its argument, so that 

@(so) 2 @(s‘) if 8‘ 2 so. (3.10) 

If we make the further assumption that 

G p ( s , ~ )  t Hap(s,P) > 0, 
for all s and p ,  we find that 

G(s‘, @(so)) - G(s’, @(s’)) >< 0 if 8‘ 8 so, 

(3.11) 
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and hence the last integral in (3.9) is non-negative. Thus 

l7, > 0 if s $: so. (3.12) 

From (3.8), (3.12) and (3.1) it then follows that 

n > 0 if (a,$))  * (80,po); (3.13) 

this completes the proof that ll is positive definite. 
We note that the thermodynamic inequality (3.1 1) can be shown to hold if c2 > 0 

and ap(p, s)/&3 > 0; in particular it is satisfied by a perfect gas, as may be verified from 
(6.2) below. 

It should also be observed that the expressions (3.4) for ll1 and (3.9) for l7, depend 
only on the reference state, the thermodynamic function H and its derivatives, and 
the local quantities s and p ;  they are natural generalizations of (2.15) of HM. More- 
over, in the incompressible limit, where c2 + 00 and p becomes a function of s alone, 
it can be verified that n, + 0 and pn2  + Ep as given by (2.15) of HM. 

4. Physical interpretation of ll 

necessary to rearrange (2.18) once more. Note that in the reference state 

say. Then 

by (2.7), (2.9), (2.10) and (2.12), andso 

To obtain a physical interpretation of ll analogous to that in HM $3, it  is first 

H(s0,po) = W O ,  @(go)) = &so), 

R’(80) = m o )  + @ ‘ ( 8 o ) / P ( ~ o )  = m o )  - Wso)  

P(8’) as’ = [B(s‘) +&(s‘)]:O 

(4.1) 

= H ( s , @ ( w - H ( s o , p o )  + f & + - W O ) ,  (4.2) 
J: 

using (4.1). From (2.6) we have 

using also (2.9) and (2.10). Substitution of (4.2), (4.3) and (2.6) into (2.18) then yields 

n = { ~ ( ~ 0 ) - ~ ( ~ ) } + { ~ ( 8 , 2 ) ) - - E ( ~ , ~ ( 8 ) ) } + { 0 o / P ) -  (@Wiw}. (4.4) 

Consider a fluid particle P of unit mass, currently at (x, t ) ;  its entropy is s = a(x, t ) ,  
its pressure is p = p(x, t )  and its internal energy is 6 = e(s ,p) .  Provided that .s lies 
within the range of values of entropy that exist in the reference state (this was assumed 
above, in (2.16)), we can also find a particle of unit mass at position xo in the reference 
state which has the same entropy aa P, i.e. 

so(x0) = 4x2 t ) .  (4.5) 

The simplest physical situation in which this can be done is when an entropy- and 
mass-conserving motion taking the reference state to the actual state can be found; 
then xo is the initial position of particle P. For the purpose of this discussion we 
therefore suppose that an external agency does indeed redistribute particles 
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adiabatically in this way, and we compute the work W that is done on P while it is 
being transferred from the position xo in the reference state to the position x in the 
actual state, along some path C. 

The presence of the excess pressure p - p o  in the energy equation (2.17) suggests 
that a physical interpretation of Il must take account of compressional work done on 
P by the e x m s  pressure p -po  alone: this is the same philosophy as adopted by Light- 
hill (1978, $1.3) for small-amplitude disturbances. We must likewise consider the 
work done against the basic pressure gradient force -Vpo.  Thus W includes a con- 
tribution 

K = J @-Po)  (-dP-% ( 4 4  

that represents the work done by the excess pressure in compressing P; there is also 
a second contribution 

C 

w, = {V@ +p-'Vp0}. ax (4.7) 
S C  

representing the energy gained by P as i t  is moved through the unbalanced force field 

Now for adiabatic processes da = 0, and so -pdp-l = dc by (2.6) and (2.7); thus 
- pV# - vpo. 

w = K+ F& = {d€+d(pop-1) +a@} 

(4.8) 

(Note that the parts of W, and W, involving po  in (4.6) and (4.7) each depend on the 
path C; however, these add to give a path-independent term in W.) By (2.10), 
@(x) = 6(so(x)) and, using (4.5) as well, @(xo) = 6 ( s ) .  Moreover, since the entropy 
a t  xo in the reference state is so(xo) = s, the pressure, density and internal energy at  
x, in the reference state must be @(s), p"(s) and ~(s, @(s)), respectively. It can then be 
seen from (4.4) and (4.8) that W = ll, showing that ll equals the work done on P in 
bringing it from its initial position in the reference state to its current location. 

S C  

= [€ +pop-' + @I&. 

5. Connection with Lorenz' available potential energy 

a rigid impermeable surface S. We define 
We now consider the fluid to be contained within a fixed volume P bounded by 

n q  V pnav, B O  (5.1) 

and note that 

(6.2) 
an DlT 

= S v P z d V .  

If the derivation of (2.17) from (2.5) is now retraced, it is easy to see that, for a motion 
that conserves mass (equation (2.2)) and entropy (equation (2.3)), 

In  particular, as remarked in 5 2, the derivation of (5.3) does not use the momentum 
equation (2.1) and would hold even if an arbitrary body force were included in (2.1). 
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Since 8 is rigid and impermeable, (5.2), (5.3) and the divergence theorem give 

- d n  = d -/ p ( e + @ ) d V  = dPT - 
dt dt v dt ' (5.4) 

is the total potential energy (Lorenz 1955). Time integration of (5.4) from some initial 
state (denoted by the suffix i) gives 

where 

We drop the assumption used in the previous section, that the actual state be 
attainable by an adiabatic mass redistribution of the reference state 9,. Instead we 
consider a (possibly hypothetical) mass- and entropy-conserving motion u(x, t )  in 
which the initial state is Lorenz' reference state by definition of we know 
that such a velocity field can always be found, although it need not satisfy the momen- 
tum equation (2.1). Equations (5.3), (5.4) and (5.6) still hold for such a motion, 
however, while by definition 

PT- PTi = A ,  ( 5 4  

i i = A + i T , > A .  (5.9) 

A being Lorenz' available potential energy. Hence by (5.6) and (5.7) 

Thus the volume integral of our potential energy generally exceeds the available 
potential energy. However, if we choose our reference state W, to be the same as 
Lorenz' (aL), n, = 0 and then n does equal A. 

6. Two special cases 
6.1. A perfect gas 

We briefly present results for this case, which is commonly used in meteorology and 
other fields. For such a gas 

(6.la, b) 
and 

where cp is the specific heat a t  constant pressure (a positive constant) and K is the gas 
constant divided by cp, and lies between 0 and 1; we have normalized the pressure by 
a standard value for convenience. Recalling (3.2)' we readily derive 

p-' = P ( s , p )  = ( ~ c ~ ) e 8 b p - ( ' - ~ ) ,  T = G(s,p) = esbpK 

H = cpe8/%pK (6.2) 

where 

For 5 2 0 it  is easily shown that 
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(since 0 < K < l ) ,  thus immediately verifying that n, > 0 for p + p o ,  as in (3 .8) .  
Using (3 .3))  we also h d  

n, = ~ ~ ~ { p ; ~ S ” ~ - p ( s ’ ) } d s ’ ,  

where p(s’) = e 8 ’ b  [@(s’)]“, and so 

Since f l  is a monotonically decreasing function (by (2 .13 ) ) ,  (6.6) implies that n, > 0 
for s + so, as in (3 .12) .  For the perfect gas, n is the sum of the expressions (6.3) and 
(6 .6) .  

Specializing further to the case of a perfect gas with an isothermal reference state 
(To = constant), we obtain 

and 
T’(so) = To = constant, 

@(so) = po  = Ti/K exp ( - s ~ / K c ~ )  

from ( 6 . l b ) .  Then (6 .3 )  becomes 

n, = Cp To exp ((8 - s o ) / c P m / P o )  

and (6 .6 )  can be integrated to give 

where 

It is easy to check directly that h(7)  is non-negative for all 7, which is again consistent 
with previous results. 

6.2.  Small disturbances 

If we assume that the actual fluid flow represents a small departure from the reference 
state go) it is straightforward to verify that II reduces to the standard expression, 
valid to second order in small quantities, for the potential energy density of infinitesi- 
mal acoustic-gravity disturbances about a state of rest (cf. Lighthill 1978, equation 
(4 .37)) .  In the first place, with sufficient accuracy we may replace s and p‘ by so and 
po, respectively, in the term Hpp(s,p‘)  in (3 .4 )  to obtain 

n, + SCp -po)2/(P:c3, (6.7) 

using (3 .5 ) ,  where co = c(so,po). Equation (6 .7 )  is the small-amplitude expression for 
the acoustic, or compressional, potential energy per unit mass. Likewise, expansion 
of the integrand in (3 .9 )  gives 

(6.8) 

to leading order in s -so. If gravity is assumed constant and unidirectional, we can 
write <p = gz, z being a vertical co-ordinate and g a constant, and also 80 = so@). A 
vertical particle displacement 5 can be defined approximately by 

(6.9) 

n2 .i. - S b  - ~ o ) 2 @ p ( ~ o )  G p ( S 0 ,  @(so) ) ,  

s - so + - gdso/dz, 

and a squared buoyancy frequency by 

(6.10) 
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as usual, Straightforward manipulations, including use of the relation 
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and (2.7), (2.12), (3.6), and(6.8)-(6.10), togetherwithachangeofindependentvariable 
from so to z,  then yield 

the standard small-amplitude approximation to the gravitational potential energy per 
unit mass. Note that (2.13) and (3.11) imply that N2 > 0, the usual condition for 
static stability of go to small disturbances. 

n2 = p p ,  (6.11) 

7. Discussion 
The quantity ll introduced in this note is only one of anumber of possible expressions 

representing the potential-plus-internal energy density that can be derived for an 
inviscid, adiabatic, compressible fluid. However, we believe that it has several con- 
ceptual and perhaps practical advantages over other, more common, forms. First, i t  
is defined locally, and thus can be used in interpretation of local energy transfers, in 
contrast to Lorenz' available potential energy, which is defined only globally. Secondly, 
it is positive definite everywhere, and is therefore a natural generalization to finite 
amplitude of the disturbance potential energy density used in the theory of infinitesi- 
mal disturbances: we have shown that it reduces to the latter in the limit of small 
amplitude. The property of non-negativeness could represent a useful conceptual 
advantage of ll over a naive definition of a local disturbance potential energy density 
as 

P-'{P[4%?4 + WX)l -Po["(~o,Po) + W ) I h  
which can take negative values. 

In  practical cases n could be a useful tool in the interpretation of the global ener- 
getics of numerical studies-? large-ampBu&e disturbances in compressible fluids like 
the atmosphere (e.g Simmons & Hoskins 1978). The 'exact' expression for the avail- 
able potential energy A,  presented by Lorenz (1955, equation (4); 1967, equation 
(109)) and valid for flows with hydrostatic balance in the vertical, is not generally 
suitable for computational purposes. Various approximate versions are usually used 
in numerical models and observational studies of the atmosphere, or alternative 
approaches are adopted (cf. Pearce 1978). The difficulty of evaluating the exact form 
of A is related to the difficulty of constructing Lorenz' reference state W,, given the 
actual distributions of mass and entropy in the fluid. Rather than using approximations 
to A it may be preferable in numerical simulations to choose some simple reference 
state Wo so that ll and T;i are readily calculable exactly, even though n is not minimal 
in the sense that A is. Careful choice of Wo might still ensure that n is much less than 
the total potential energy PT, most of which, as pointed out by Lorenz, may be 
irrelevant to dynamical discussions. [It should be noted that for a real fluid, including 
diabatic effects, there is no fundamental reason for preferring Lorenz' reference state 
to any other: cf. Lorenz (1967), pp. 102-103.1 In  observational studies of the atmo- 
sphere, however, such possible advantages of over the approximate value of A 
could be masked by inaccuracies in the data (N.-C. Lau, personal communication, 
1980). 
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